Multiply with concrete objects, arrays and pictorial representations.

Double numbers up to 20.
Counting in multiples of 2,5 and 10 to begin learning times tables.
Use repeated addition and arrays to represent number sentences.

Groups of, lots of, times, array, altogether, multiply, count

	Concrete	Pictorial	Abstract
	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	Partition a number then double each part and recombine to show how to double a number.
	Count in multiples of different numbers, using concrete objects to show equal groups.	Use a number line or pictures to continue to support counting in equal groups.	Count in sequences of numbers aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20 \end{aligned}$
	Use concrete objects to add equal groups. $\begin{aligned} & 2+2+2+2=8 \\ & 4+4=8 \end{aligned}$	Use a number line to show adding on in equal sized jumps. \qquad	Record number sentences to show repeated addition. $\begin{gathered} 5 \times 2 \\ 2+2+2+2+2 \text { or } 5+5 \end{gathered}$
cos.	Create arrays using counters or cubes to show multiplication sentences. $\begin{aligned} & 3 \times 10=30 \\ & 10 \times 3=30 \end{aligned}$	Draw arrays $4 \times 2=$ in different orientations 0 $2 \times 4=$ to show 0 different 0 number	Understand that 5×2 can be calculated as 5 lots of 2,2 lots of 5 as well as reinforcing repeated addition. $\begin{gathered} 5 \times 2 \text { or } 2 \times 5 \\ 2+2+2+2+2 \text { or } 5+5 \end{gathered}$

Children should

- Have access to a range of equipment such as numicon, number lines, bead strings, 100 squares, cubes \& counters.
- Have opportunities to multiply using concrete objects in a range of real life contexts e.g. multiplying the number of teddies, number of children etc.
- Be exposed to a variety of models and images to support their learning.
- Read and write number sentences using the x and $=$ signs.

Understand the = as "equals" or "balanced" and not as "the answer".

- Solve one step problems.

Multiply 2 digit numbers by a single digit number. Introduce grid method for multiplying 2 digits by 1 digit.

Move on to expanded \& compact column methods to introduce short multiplication.

Encourage the use of times tables facts to support mental calculation.

Key Vocab:

Groups of, lots of, times, array, altogether, multiply, count, multiplied by, column, row, repeated addition, commutative, sets of, equal groups, as big as, once, twice, three times.
Partition, grid method, multiple, product, tens, ones, value.

Abstract		
Start by multiplying by a one- digit number and showing the addition clearly alongside the grid.		
x	30	5
7	210	35

Use place value counters to show place value groups of each number.
poyəәu uиmןoo pəpuedxy
Recombine counters to count the
25×3
Recomb.
total.

Pictorial

$240+12=252$
Using images of place value counters organised on a place value grid.

As above.
Also refer back to arrays \& number line images from Year 2.

Model expanded and compact methods alongside grid method.

hto
35
\times7 35 245 245
345 2

Children should

- Understand the commutative law \& the relationship between multiplication \& repeated addition.
- Begin to use counting and times table facts to solve problems mentally. ($2 x, 3 x, 4 x, 5 x, 8 x$ and $10 x$).
- Understand the effect of multiplying any whole number by 10 or 100 using place value.
- Have experience of applying these methods to a range of different contexts including worded multiplication problems \& missing number problems.
- Have experience of solving positive integer scaling problems eg. If I know that $5 \times 3=15$, I also know that $50 \times 3=150$ and $5 \times 30=150$.

Children should

- Approximate before they calculate (make this a regular part of calculation) \& refer back to their approximation as part of the checking process.
- Use place value multiplication to multiply by 10 and 100 and recognise that 30×50 can be found by multiplying $3 \times 10 \times 5 \times 10$ which is equal to 15×100. Understand that if I know the answer to 4×8, I can use this to find the answer to $40 \times 8,4 \times 80$ and $40 \times 80,400 \times 8,40 \times 80$.
- Understand the effect of multiplying by 0 and 1.
- Recall all times table facts.

Apply written methods to a range of contexts including money \& measures.

