

Children should

- Have access to a range of equipment such as Numicon, number lines, bead strings, 100 squares.
- Have opportunities to add using concrete objects in a range of real life contexts e.g. adding the number of teddies, number of children etc.
- Be exposed to a variety of models and images to support their learning.
- Read and write number sentences using the + and $=$ signs.

Solve missing number problems.

Children should

- Have experience of adding three 1 digit numbers, two digit numbers and tens, two digit numbers and ones and two 2 digit numbers using concrete apparatus.
- Use numberlines to support counting on in tens and ones. (prepared, then empty).
- Move to more formal recording - expanded column method, then compact column method. These two methods could be taught in parallel.
- Have experience of applying these methods to a range of different contexts including worded addition problems.
- Missing number problems.
- Know that numbers can be added in any order (commutative law).

Add up to 3 digits.

Expanded column method adding ones first. Compact column addition method including exchanging.

These should be taught in parallel with an emphasis on applying to reasoning problems.

Kev Vocab:

add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary.
Hundreds boundary, increase, vertical, exchange, regroup expanded, compact.

	Concrete	Pictorial	Abstract
	Use of dienes or place value counters to model addition by making both numbers and using a place value grid to align the numbers according to their place value.	Pictorial representation of the concrete apparatus. Children can draw the counters, using place value columns. Also extend to 4 digit numbers.	Start by modelling the expanded method. The compact method can be modelled alongside. $$ Children to apply the methods in context.
	Demonstrate the need to swap ten ones for one ten when exchanging.	\bullet \ddots \bullet \bullet \bullet \bullet $\bullet \bullet$ \bullet \bullet \bullet \ddots \bullet 7 1 5 1 \bullet \bullet	

Children should

- Have experience of adding 3 digit numbers and ones, 3 digit numbers and 2 digit numbers, two 3 digit numbers using concrete apparatus.
- Use formal recording - expanded column method, then compact column method. These two methods should be taught in parallel.
- Have experience of applying these methods to a range of different contexts including worded addition problems \& missing number problems.
- Move on to adding with 4 digit numbers \& applying this to a range of reasoning problems.
- Estimate reasonable answers to calculations by rounding \& know the importance of estimation.
- Understand the commutative law and how it applies to addition

Yr 4- Add up to 4 digits using the formal written
methods of columnar addition where appropriate. Yr 5-Add numbers with more than 4 digits using the formal written methods of columnar addition where appropriate (2 decimal places)
Yr 6- Add several numbers of increasing complexity

(up to 3 decimal places)

Compact column addition method including exchanging. Application of columnar addition for decimal numbers in context - money \& measures.

Children should

- Have experience of adding at least 4 digit numbers to numbers of different sizes, using concrete apparatus.
- Apply mental calculations using increasingly large numbers (Yr6 including mixed operations)
- Have experience of applying these methods to a range of different contexts including worded addition problems including 2 -step problems, and multi-step $(\mathrm{Yr} 5 / 6$) problems, deciding which operations and methods to use and why.

